Energy transfer in nanowire solar cells with photon-harvesting shells

نویسندگان

  • C. H. Peters
  • A. R. Guichard
  • A. C. Hryciw
  • M. D. McGehee
چکیده

The concept of a nanowire solar cell with photon-harvesting shells is presented. In this architecture, organic molecules which absorb strongly in the near infrared where silicon absorbs weakly are coupled to silicon nanowires SiNWs . This enables an array of 7m-long nanowires with a diameter of 50 nm to absorb over 85% of the photons above the bandgap of silicon. The organic molecules are bonded to the surface of the SiNWs forming a thin shell. They absorb the low-energy photons and subsequently transfer the energy to the SiNWs via Förster resonant energy transfer, creating free electrons and holes within the SiNWs. The carriers are then separated at a radial p-n junction in a nanowire and extracted at the respective electrodes. The shortness of the nanowires is expected to lower the dark current due to the decrease in p-n junction surface area, which scales linearly with wire length. The theoretical power conversion efficiency is 15%. To demonstrate this concept, we measure a 60% increase in photocurrent from a planar silicon-on-insulator diode when a 5 nm layer of poly 2-methoxy-52 -ethyl-hexyloxy -1,4-phenylene vinylene is applied to the surface of the silicon. This increase is in excellent agreement with theoretical predictions. © 2009 American Institute of Physics. DOI: 10.1063/1.3153281

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Contact Electrodes for Semiconductor Nanowire Solar Energy Harvesting Devices.

Transparent, low-resistive contacts are critical for efficient solar energy harvesting devices. It is important to reconsider the material choices and electrode design as devices move from 2D films to 1D nanostructures. In this paper, we study the effectiveness of indium tin oxide (ITO) and metals, such as Ag and Cu, as contacts in 2D and 1D systems. Although ITO has been studied extensively an...

متن کامل

Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell

The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...

متن کامل

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

متن کامل

Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy.

IO N The harvesting of energy from the environment dates back to the age of the windmill and the waterwheel. Their modern counterparts are hydro-power plants, wind farms, solar farms, and more recently, novel piezoelectric devices [ 1 ] for power generation from mechanical vibration. [ 2 ] Fully utilizing power sources such as light, [ 3–5 ] thermal, and mechanical energy is of great importance...

متن کامل

Role of Resonance Energy Transfer in Light Harvesting of Zinc Oxide-Based Dye-Sensitized Solar Cells

In this contribution we have studied the dynamics of light harvesting of ZnO nanoparticles (NPs) to a surface adsorbed sensitizing dye (SD) N719. By using the picosecond resolved Förster resonance energy transfer (FRET) technique we have explored that the excited ZnO NPs resonantly transfer visible optical radiation to the SD N719. The consequence of the energy transfer on the performance of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009